1. Let S_{8} be the permutation group on $\{1,2,3,4,5,6,7,8\}$.
(a) $\left[\mathbf{2}\right.$ points] Compute the order of $(1243)(4536)(78) \in S_{8}$.

Solution: We first write the permutation as a product of disjoint cycles: $(1243)(4536)(78)=$ $(36)(4512)(78)$. Then by Theorem IV.2.8, we have $\operatorname{ord}((36)(4512)(78))=\operatorname{lcm}(2,4,2)=4$.
(b) [3 points] Let $\sigma_{1}=(134)$ and $\sigma_{2}=(278)$ be elements in S_{8}. Find an element $\tau \in S_{8}$ such that $\sigma_{1}=\tau \sigma_{2} \tau^{-1}$.

Solution: By Lemma IV.3.6, we have $\tau(278) \tau^{-1}=(\tau(2) \tau(7) \tau(8))=(134)$. So $\tau(2)=1$, $\tau(7)=3, \tau(8)=4$ and one can take $\tau=(84)(73)(12)$. (One can also compute τ directly.)
(c) [2 points] Show that the elements (1354672) and (18967543) in S_{8} are not conjugate.

Solution: Suppose that they are conjugate. Then there exists $\tau \in S_{8}$ such that (1354672) = $\tau(18967543) \tau^{-1}$. The left hand side is an even permutation and the right hand side is an odd permutation. So we get a contradiction.
Alternative solution: Suppose that they are conjugate. Then there exists $\tau \in S_{8}$ such that $(1354672)=\tau(18967543) \tau^{-1}$. Since the conjugation map $\gamma_{\tau}: S_{8} \rightarrow S_{8}$ is an isomorphism, the orders of $\gamma((18967543))=(1354672)$ and (18967543) must be the same. However,

$$
\operatorname{ord}((18967543))=8 \neq 7=\operatorname{ord}((1354672))
$$

So we get a contradiction.
(d) [3 points] Describe an abelian subgroup of S_{8} with 15 elements.

Solution: The cyclic group generated by (123)(45678) is abelian and has 15 elements since $\operatorname{lcm}(3,5)=15$.
2. Let H, K be subgroups of a finite group G and $H K:=\{h k \mid h \in H, k \in K\}$.
(a) [3 points] Using $H K=\bigcup_{h \in H} h K$, show that $|H K|=|H||K|$ when $H \cap K=\{e\}$.

Solution: By Lemma VII.1.7, we have $h_{1} K=h_{2} K \Longleftrightarrow h_{1} h_{2}^{-1} \in K$. Since $H \cap K=\{e\}$ we get $h_{1} h_{2}^{-1}=e$, i.e., $h_{1}=h_{2}$. So $h_{1} K \neq h_{2} K$ if $h_{1} \neq h_{2}$. This implies $\#\{h K: h \in H\}=|H|$. Combining this with the fact that left cosets of K are pairwise disjoint (see the proof of Lagrange's theorem), we get

$$
|H K|=\left|\bigcup_{h \in H} h K\right|=\sum_{h \in H}|h K| .
$$

Since $|g K|=|K|$ for all $g \in G$, we can conclude $\sum_{h \in H}|h K|=|H||K|$.
(b) [3 points] Show that if K is a normal subgroup then $H K$ is a subgroup of G.

We will check $H 1, H 2$ and $H 3$:
(H1) Since H, K are subgroups in G, we have $e \in H K$.
(H2) If $h_{1} k_{1}$ and $h_{2} k_{2}$ are in $H K$ then

$$
h_{1} k_{1} h_{2} k_{2}=h_{1}\left(h_{2} h_{2}^{-1}\right) k_{1} h_{2} k_{2}=h_{1} h_{2}\left(h_{2}^{-1} k_{1} h_{2}\right) k_{2} \in H K
$$

since $h_{2}^{-1} k_{1} h_{2} \in K$.
(H3) If $h k \in H K$ then $k^{-1} h^{-1}=h^{-1} h k^{-1} h^{-1} \in H K$ since $h k^{-1} h^{-1} \in K$.
(c) [3 points] Let G be a subgroup of S_{5}. Suppose (13425) $\in G$, and suppose G contains a subgroup isomorphic to S_{4}. Show that $G=S_{5}$.

Solution: Let K denote the subgroup in S_{5} isomorphic to S_{4} and let $H:=\langle(13425)\rangle$. We have $|K|=24$ and $|H|=5$. Since every element in H has order 5 and since $5+24$, we have $K \cap H=\{(1)\}$. So by (a) we have $|H K|=|H||K|=120$. Since we have $H K \subset G \subset S_{5}$ and $|H K|=\left|S_{5}\right|$, we get $G=H K=S_{5}$. (You can also solve this without using (a).)
3. [4 points] Let G be a group of order 105 and H be a group of order 28. Suppose $\varphi: G \rightarrow H$ is a homomorphism, and assume that there exists an element $a \in G$ such that $\varphi(a) \neq e_{H}$. Find the cardinalities $|\varphi(G)|$ and $|\operatorname{ker} \varphi|$.

Solution: Existence of an element $a \in G$ with $\varphi(a) \neq e_{H}$ implies φ is not the trivial homomorphism. So $|\varphi(G)| \neq 1$. Since $\varphi(G)$ is a subgroup in H and hence by Lagrange's theorem, we have $|\varphi(G)| \in\{2,4,7,14,28\}$. On the other hand, by the homomorphism theorem we have

$$
G / \operatorname{ker}(\varphi) \cong \varphi(G)
$$

and since $\operatorname{ker}(\varphi) \leq G$ then by Lagrange's theorem we get $|\varphi(G)|=|G / \operatorname{ker}(\varphi)| \epsilon$ $\{3,5,7,15,21,35,105\}$. The only integer in the intersection is 7 so $|\varphi(G)|=7$ and hence $|\operatorname{ker}(\varphi)|=15$.
4. [4 points] Up to isomorphism, describe all abelian groups of cardinality 200 containing an element of order 50 .

Solution: In the question it is asked to describe abelian groups so we can use the structure theorem. By the structure theorem, up to isomorphism, the abelian groups of order 200 are

$$
\begin{aligned}
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 50 \mathbb{Z} \\
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z} \\
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 100 \mathbb{Z} \\
& \mathbb{Z} / 10 \mathbb{Z} \times \mathbb{Z} / 20 \mathbb{Z} \\
& \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 40 \mathbb{Z} \\
& \mathbb{Z} / 200 \mathbb{Z}
\end{aligned}
$$

Among these abelian groups, the ones containing an element of order 50 are

$$
\begin{aligned}
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 50 \mathbb{Z} \\
& \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 100 \mathbb{Z} \\
& \mathbb{Z} / 200 \mathbb{Z}
\end{aligned}
$$

5. True/False. Prove the following statements if they are correct and disprove if they are wrong.
(a) [3 points] If a finite group G acts on a set X in such a way that there is just one orbit for this action, then $|X| \leq|G|$.

Solution: True. Since $X=\cup G x$ and since there is only one orbit, we have $G x=X$ for all $x \in X$. By the Orbit-Stabilizer theorem

$$
|X|=|G x|=\frac{|G|}{\left|G_{x}\right|}
$$

hence $|G|=\left|G_{x} \| X\right|$ so $|X| \leq|G|$.
(b) [3 points] A group with order 34 has an element with order above 18, then the group is a cyclic group (i.e., the group is generated by one element).

Solution: True. Let G be a group with $\# G=34$. Since the order of an element divides the cardinality of the group and since the divisors of 34 are $1,2,17,34$, if there is an element $g \in G$ of order >17 then this means that the element g has order 34. Hence $G=\langle g\rangle$.
(c) [3 points] Every group of order 99 contains a normal subgroup of order 9 .

Solution: True. Let G be a group of order 99. By the Sylow theory (Theorem VI.4.3), there is a Sylow 3 -group in G of order 9 , call this group H. Let $n_{3}(G)$ denote the number of Sylow 3 -groups in G. Then by the same theorem, we have $n_{3}(G) \equiv 1 \bmod 3$ and $n_{3}(G) \mid 11$ hence $n_{3}(G)=1$. Moreover, the same theorem says that the Sylow 3-groups are conjugate. Since we have only one Sylow 3 -group, we have $g H g^{-1}=H$ for all $g \in G$. Therefore, the subgroup H is normal hence the statement is correct.

