- 1. Let S_8 be the permutation group on $\{1, 2, 3, 4, 5, 6, 7, 8\}$.
 - (a) [2 points] Compute the order of $(1243)(4536)(78) \in S_8$.

Solution: We first write the permutation as a product of disjoint cycles: (1243)(4536)(78) = (36)(4512)(78). Then by Theorem IV.2.8, we have $\operatorname{ord}((36)(4512)(78)) = \operatorname{lcm}(2,4,2) = 4$.

(b) [3 points] Let $\sigma_1 = (134)$ and $\sigma_2 = (278)$ be elements in S_8 . Find an element $\tau \in S_8$ such that $\sigma_1 = \tau \sigma_2 \tau^{-1}$.

Solution: By Lemma IV.3.6, we have $\tau(278)\tau^{-1} = (\tau(2)\tau(7)\tau(8)) = (134)$. So $\tau(2) = 1$, $\tau(7) = 3$, $\tau(8) = 4$ and one can take $\tau = (84)(73)(12)$. (One can also compute τ directly.)

(c) [2 points] Show that the elements (1354672) and (18967543) in S_8 are not conjugate.

Solution: Suppose that they are conjugate. Then there exists $\tau \in S_8$ such that $(1354672) = \tau(18967543)\tau^{-1}$. The left hand side is an even permutation and the right hand side is an odd permutation. So we get a contradiction.

Alternative solution: Suppose that they are conjugate. Then there exists $\tau \in S_8$ such that $(1354672) = \tau(18967543)\tau^{-1}$. Since the conjugation map $\gamma_{\tau} : S_8 \to S_8$ is an isomorphism, the orders of $\gamma((18967543)) = (1354672)$ and (18967543) must be the same. However,

 $\operatorname{ord}((18967543)) = 8 \neq 7 = \operatorname{ord}((1354672)).$

So we get a contradiction.

(d) [3 points] Describe an abelian subgroup of S_8 with 15 elements.

Solution: The cyclic group generated by (123)(45678) is abelian and has 15 elements since lcm(3,5) = 15.

- 2. Let H, K be subgroups of a finite group G and $HK \coloneqq \{hk \mid h \in H, k \in K\}$.
 - (a) [3 points] Using $HK = \bigcup_{h \in H} hK$, show that |HK| = |H||K| when $H \cap K = \{e\}$.

Solution: By Lemma VII.1.7, we have $h_1K = h_2K \iff h_1h_2^{-1} \in K$. Since $H \cap K = \{e\}$ we get $h_1h_2^{-1} = e$, i.e., $h_1 = h_2$. So $h_1K \neq h_2K$ if $h_1 \neq h_2$. This implies $\#\{hK : h \in H\} = |H|$. Combining this with the fact that left cosets of K are pairwise disjoint (see the proof of Lagrange's theorem), we get

$$|HK| = |\bigcup_{h \in H} hK| = \sum_{h \in H} |hK|.$$

Since |gK| = |K| for all $g \in G$, we can conclude $\sum_{h \in H} |hK| = |H||K|$.

(b) [3 points] Show that if K is a normal subgroup then HK is a subgroup of G.

We will check H1, H2 and H3:

- H1) Since H, K are subgroups in G, we have $e \in HK$.
- (H2) If h_1k_1 and h_2k_2 are in HK then

 $h_1k_1h_2k_2 = h_1(h_2h_2^{-1})k_1h_2k_2 = h_1h_2(h_2^{-1}k_1h_2)k_2 \in HK$

since $h_2^{-1}k_1h_2 \in K$.

(H3) If $hk \in HK$ then $k^{-1}h^{-1} = h^{-1}hk^{-1}h^{-1} \in HK$ since $hk^{-1}h^{-1} \in K$.

(c) [3 points] Let G be a subgroup of S_5 . Suppose (13425) $\in G$, and suppose G contains a subgroup isomorphic to S_4 . Show that $G = S_5$.

Solution: Let K denote the subgroup in S_5 isomorphic to S_4 and let $H := \langle (13425) \rangle$. We have |K| = 24 and |H| = 5. Since every element in H has order 5 and since $5 \neq 24$, we have $K \cap H = \{(1)\}$. So by (a) we have |HK| = |H||K| = 120. Since we have $HK \subset G \subset S_5$ and $|HK| = |S_5|$, we get $G = HK = S_5$. (You can also solve this without using (a).)

3. [4 points] Let G be a group of order 105 and H be a group of order 28. Suppose $\varphi : G \to H$ is a homomorphism, and assume that there exists an element $a \in G$ such that $\varphi(a) \neq e_H$. Find the cardinalities $|\varphi(G)|$ and $|\ker \varphi|$.

Solution: Existence of an element $a \in G$ with $\varphi(a) \neq e_H$ implies φ is not the trivial homomorphism. So $|\varphi(G)| \neq 1$. Since $\varphi(G)$ is a subgroup in H and hence by Lagrange's theorem, we have $|\varphi(G)| \in \{2, 4, 7, 14, 28\}$. On the other hand, by the homomorphism theorem we have

 $G/\ker(\varphi) \cong \varphi(G)$

and since $\ker(\varphi) \leq G$ then by Lagrange's theorem we get $|\varphi(G)| = |G/\ker(\varphi)| \in \{3, 5, 7, 15, 21, 35, 105\}$. The only integer in the intersection is 7 so $|\varphi(G)| = 7$ and hence $|\ker(\varphi)| = 15$.

4. [4 points] Up to isomorphism, describe all abelian groups of cardinality 200 containing an element of order 50.

Solution: In the question it is asked to describe abelian groups so we can use the structure theorem. By the structure theorem, up to isomorphism, the abelian groups of order 200 are

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}$ $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ $\mathbb{Z}/10\mathbb{Z} \times \mathbb{Z}/20\mathbb{Z}$ $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/40\mathbb{Z}$ $\mathbb{Z}/200\mathbb{Z}$

Among these abelian groups, the ones containing an element of order 50 are

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}$ $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/100\mathbb{Z}$ $\mathbb{Z}/200\mathbb{Z}$

- 5. True/False. Prove the following statements if they are correct and disprove if they are wrong.
 - (a) [3 points] If a finite group G acts on a set X in such a way that there is just one orbit for this action, then $|X| \leq |G|$.

Solution: **True.** Since $X = \bigcup Gx$ and since there is only one orbit, we have Gx = X for all $x \in X$. By the Orbit-Stabilizer theorem

$$|X| = |Gx| = \frac{|G|}{|G_x|}$$

hence $|G| = |G_x||X|$ so $|X| \le |G|$.

(b) **[3 points]** A group with order 34 has an element with order above 18, then the group is a cyclic group (i.e., the group is generated by one element).

Solution: **True.** Let G be a group with #G = 34. Since the order of an element divides the cardinality of the group and since the divisors of 34 are 1, 2, 17, 34, if there is an element $g \in G$ of order > 17 then this means that the element g has order 34. Hence $G = \langle g \rangle$.

(c) [3 points] Every group of order 99 contains a normal subgroup of order 9.

Solution: **True.** Let G be a group of order 99. By the Sylow theory (Theorem VI.4.3), there is a Sylow 3-group in G of order 9, call this group H. Let $n_3(G)$ denote the number of Sylow 3-groups in G. Then by the same theorem, we have $n_3(G) \equiv 1 \mod 3$ and $n_3(G) \mid 11$ hence $n_3(G) = 1$. Moreover, the same theorem says that the Sylow 3-groups are conjugate. Since we have only one Sylow 3-group, we have $gHg^{-1} = H$ for all $g \in G$. Therefore, the subgroup H is normal hence the statement is correct.